The Plutonium Files Excerpt

< Back


The accident occurred on August 1, 1944, a morning like any other in Los Alamos: hot, dry, the sky an indigo blue over the sprawl of wooden buildings and barbed-wire fences that constituted the core of the Manhattan Project. At seven thousand feet, the New Mexico air smelled of sun, pines, a trace of frost. Occasionally, the scent of dust spiraled up from the desert, where temperatures hovered around 100 degrees.

In twelve months, two atomic bombs would be dropped on Japan, and the secret work being carried out in the wooden buildings would be revealed to the world. On the morning of the accident, the atomic bomb had progressed far beyond mathematical theories but was still an unproven weapon. Plutonium, a silvery metal discovered about four years earlier, was one of the key elements that would transform the theories into a fireball.

In Room D-119, a cheerful young chemist named Dan Mastick was standing over a sink chatting with his laboratory partner, Arthur Wahl, a chemist not much older than himself and one of the four scientists from the University of California at Berkeley who had discovered plutonium. Mastick was just twenty-three years old, a “bushy-tailed kid,” as he would later describe himself, with short blond hair and an alert, friendly face. He had been one of Berkeley’s most promising chemistry graduates and was just about to enlist in the Navy when J. Robert Oppenheimer approached him and asked if he would like to join the scientific team being assembled in Los Alamos, the most secret site in the vast network of laboratories and factories established to build the bomb.

Oppenheimer, a brilliant theoretical physicist, was already a legend on the Berkeley campus, and Mastick was thrilled at the idea of working with him. When he arrived in Los Alamos in the spring of 1943, Oppenheimer had designated him the lab’s ultra microchemist. Working with amounts of plutonium that were too small to be seen with the naked eye, he studied the chemical reactions of the new material under a microscope. His glass test tubes were no bigger than sewing needles and his measuring instruments looked like a child’s toys.


Left, Albert Stevens, right, Fredna and Elmer Allen